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Abstract—A practical method of analyzing a brace under repeated axial force is presented. A closed-form
solution has been derived for a bar of 1deal I-section with bi-linear stress—stram relationship, and the solution
for the elastic-perfectly plastic bar shows good agreement with the exact solution by Nonaka For a bar of
arbitrary solid cross-section with piecewise linear stress—strain relationship, an incremental load-displacement
relationship has been obtamned m an analytical form The computed results agrees reasonably well with the
experimental results and with detaled fimte element solution

1. INTRODUCTION

A brace, one of the most important earthquake-resistant elements of a steel structure, is sub-
jected to alternately repeated axial forces by the earthquake. Because the initial rigidity and
strength of the brace are much greater than those of the frame elements in a braced frame, it
is essential to study the accurate axial force-displacement relationship of a single brace to in-
vestigate the elastic-plastic behavior of braced frames.

A number of theoretical investigations of the hysteretic behavior of a single brace have been
made in the last decade, and can be classified into two categories. The first approach is to obtain
analytical solutions using the plastic hinge concept in which the material yielding is concentrated
in a critical section[1-7]; and the second is to use a numerical method based on the one- or two-
dimensional continuum theory([8-12].

Although the plastic hinge analysis can yield closed-form solutions on some simple problems,
because of the assumption of perfect plasticity, the influence of the Bauschinger’s effect, the
strain hardening, and the reversal of plastic strain should be ignored. The reduction of the sec-
tional rigidity caused by the partial yielding is also ignored, which plays an important role on the
post-buckling behavior

The numerical continuum analysis can be conducted by introducing the appropriate mathe-
matical model and the precise constitutive relationship. However, except for some simple prob-
lems, it takes much time to compute the complicated interactions between braces and frame
elements of a braced frame. The analysis requires solving simultaneous nonlinear equations so
many times that it involves the risk that the iterative procedure does not converge.

In this study, we developed a practical method of analysis of the hysteretic behavior of a
simply supported prismatic bar subjected to repeated axial force. The method holds reasonable
accuracy with much less computing time than is required by the numerical continuum analysis.
The bar is composed of two nonflexural straight segments and one elastic-plastic spring, whose
mechanical property depends on the moment-curvature relation under varying axial force. The
load-displacement relationship is obtained in a simple form, based on the detailed stress—strain
relationship of the material.

2 ASSUMPTIONS

The general basic assumptions are: (1) the material is sufficiently dutile; (2) local instability
does not occur; (3) although change in geometry is taken into account, deflection is so small that
the square of the slope is negligibly small in comparison with unity.

The following idealizations are adopted: The simply supported bar of length 2L (Fig. 1a), is
idealized into a model (Fig. 1b) composed of an elastic-plastic spring ahd two straight segments.
The relative rotation 26 of the spring is expressed by the curvature x of the midsection, which
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(c)
Fig 1. Analytical model

is determined by the axial force N and the bending moment M = —Nv of the midsection, as
follows:

0 =ELk )

where £ is a constant, independent of the loading history or the slenderness of the bar.

This idealization may be recognized as the generalized Shanley’s tnodel{13], and physically
corresponds to the assumption that the curvature of the midsection is distributed uniformly over
the length 2£L and that the remaining portions remain straight (Fig. 1¢). £ is estimated as § = 1/3
by which the total hysteretic behavior under repeated axial force is evaluated most accurately.
This is discussed later.

A very short column does not buckle immediately when the axial compression attains the
crush load,; it plastically contracts to some extent without any lateral deflection. The axial force-
displacement relation has a plastic plateau. Because the length of the plateau depends upon the
distribution of cross-sectional imperfections and can not be determined definitely[14], it is also
assumed that a compressed straight bar buckles when the compression reaches the Euler load, Ng
or the current crush load. We exclude the case in which the bar-length is so short that the plastic
plateau plays an important role in the total hysteretic behavior.

3 BASIC RELATIONSHIPS
Defining nondimensional parameters of axial force N and bending moment M of the mid-
section (Fig. 2), as n=N/N,, and m=M|M,, the equilibrium of the half bar, along with eqn (1),
gives

m = —nk/n, (2

where N is the limit load in pure tension, M, is the limit moment in pure bending, k=EI /Mg«
is the nondimensional value of the curvature « of the midsection, and n_= EI(£N,L?) is the ratio
of the elastic buckling load of the model to N, where E is Young’s modulus and I is
the moment of inertia of the cross section. The ratio of the Euler load to Ny, ng = m2EI(4N,L?),
is related to n. by n. = 4/(éx*)ng and, if £ =4/7#%, n. agree with ng.

Fig 2 Equilibnium of a haif bar
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Equation (2) can be written incrementally, without neglecting higher order terms, as

dm = ~(ndk + kdn + dn dk)/n,. 3)

The definition of the stress resultants gives two incremental constitutive relationships at the
midsection,

{dn=§de+a§dk
dm =Sde+Idk 0]

where de = de/sy denotes the ratio of the axial strain increment de of the centroid to the initial
yield strain ey, and « = ZZ/(AI) is a cross sectional parameter of sectional area A, plastic section

modulus Z,, and 1. Values A= I wdAlIA, S$=[ yudAlZ, and I = [ y*u dA/T are evaluated by

integrating the ratio u of the current tangent modulus of each fiber element to the Young’s mod-
ulus, over the cross sectional area, where y denotes the distance between each fiber element and
the centroid.

Eliminating dm from eqns (3) and (4), de and dn are written as simple functions of dk:

de = C; dk + Cy{dk)*/(1 + C dk)

- - ®
dn = (C,A +a8) dk + C,A(dkPI(1 + C dk)

where

-

_nd+akS+n C,= CA+aS ._ A

kA+nS 0 kA+nS = kA+nS

G

In the actual calculation, A, § and T can be computed by dividing the midsection into a finite
number of strip elements, assuming the uniform distribution of p in a strip. If we also assume
that the stress-strain relationship is piecewise linear, A, S and [ vary discretely with time and
eqn (5) is valid for finite duration while A, S and I remain constant, because the nonlinear term
is not neglected in eqn (3).

To carry out accurate step-by-step computation, it is necessary to trace each branching point
at which the stiffness distribution of the system changes. The nondimensional strain increment
of the jth fiber element of midsection and that of the straight segment, taking into account eqn
(4), are written as the functions of dk:

de,= de +(Z,/T)y, dk={C;+(Z,/T)y}dk+Cdk)(1 + C dk) )
- - n 2
deg = dnfug = {(C.A +af) dk *%&é% } / - )

The necessary increment dé of a certain fiber element, at which the fiber stiffness sub-
sequently changes (Fig. 3), is determined from the constitutive relationship and the strain history.
Substituting d¥ into the left member of eqn (6) and solving it, the corresponding increment of the
nondimensional curvature dk is obtained. The optimum value of dk can be determined after
examining all dk values for each fiber element of the midsection and the straight segments.

The relative axial displacement, A, of the bar ends is given nondimensionally by the sum of
the elastic-plastic extension of the bending portion and straight segments, and the axial com-
ponent of the change in geometry:

8sA/(Leg) = 8p+ Bp+ 85 8)

8= e, Sp= (1"£)€R
8 = — 0°1(2e,) = — atk/(2n,)
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and all components are expressed incrementally as
dag = §de, dSR = (l—f) deR (9)

ddg = —aél(2n)(2k+dk) dk.

If the bar is composed of an ideal I-section with bi-linear stress-strain relationship (Fig. 4),
the closed-form solution of load-displacement relationship is obtained. In this case, ¢ and k in
eqn (8) are expressed by the simple functions of n, according to the stress states of both flanges
(Table 1), where ¢f and ef denote the normalized plastic strains of each flange (Fig. 4b), 1. is
the strain hardening ratio, and ez is evaluated by n and the residual strain e%.

(n+D/u’-1: n-pleg<—-1
&= n+(1-p%ek: |n—pue=s1 (10)
(m=1)u+1: n—plg>1.

Therefore, the nondimensional axial displacement 3 is expressed in terms of n, in correspondence
with values of ef, e§ and ek. The general hysteretic behavior of a bar of 1deal I-section with -
linear stress—strain relationship (Fig. 5), is discussed in the Appendix.

4. RESULTS AND DISCUSSIONS

The present analysis can be compared with the exact solution by Nonaka{3] for the
elastic-perfectly plastic bar of ideal I-section (Fig. 6). £ = 1/3 is the value that makes the central
deflection of the model agree with that of a simply supported beam subjected to the concentrated
lateral load at the center, and £ = 4/7* corresponds to the value that makes the elastic buckling load
of the model agree with the Euler load. In Fig. 6, n — §is little dependent on the £ value at the mech-
anism state in either the compression or tension range, but the elastic recovery lines and the total
hysteretic behavior agree better with the exact solution for £ = 1/3. It does, however, give about
a 20% greater elastic buckling load than the Euler load for slender bars.

The validity of the present analysis depends greatly on the estimation of the £ value, and ¢
should be set to £ = 1/3 because it gives a good estimation of the total hysteretic behavior. The
mathematical appropriateness of this value will be discussed later.

The effect of the strain hardening is illustrated in Fig. 7. The hardemng algebraically increases
the loading capacity of stubby bars in the mechanism state, and has little effect on slender bars, as
ne is less than umity.
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Table 1. Deformation charactenstics for braces with varymg state of stress

FLANGE 2
ELASTIC YIELDING IX TENSION
Case I
- 4%y (ef - oF
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ng = 2u°nc/ a+39

The results of the step-by-step computation for a bar of rectangular cross section are compared
with those of the one-dimensional finite element analysis[12] (Figs. 8 and 9). Two types of
stress-strain relationships are assumed; one is the bi-linear type with hardening modulus, 107*x E
(Fig. 10a), which closely approximates the property of elastic~perfectly plastic material, and the
other is the piecewise linear type (Fig. 10b), which approximates the hysteretic behavior of mild
steel{15] (Fig. 10c). Because the Bauschinger’s effect and the strain hardening are not taken into
account (Fig. 8), when the axial force attains its limit value N, the bar becomes straight and the
subsequent behavior takes the same pattern as the virgin state. Both curves agree well with each
other, although some difference is seen for the stubby bar, where the present analysis slightly over-
estimates the deterioration of the hysteresis loop.

Figure 9 shows the results for. the piecewise linear constitutive relationship. Because of the

Fig 5 Typical behavior of ideal I-section
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Fig 7 Effect of strain hardening
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Fig. 8 Comparision between present analysis and finite element solution (Elastic-perfectly plastic
stress~strain relationship.)

effect of strain hardening, the bar does not recover its straight configuration even if the axial force
equals or becomes larger than N,. The subsequent behavior differs greatly from that of the virgin
state, as the Bauschinger’s effect plays an important role. The hysteresis loop deteriorates with the
increase of loading cycles more slowly than in the case of Fig. 8. The present analysis slightly
underestimates the compression capacity as compared with the finite element solution.

The present analysis is in good agreement with the experimental results of Wakabayashi et
al.[16] (Fig. 11).

3 FURTHER REMARKS

The validity of the analysis presented here depends on the selection of the £ value. Setting
£ = 1/3, this analysis showed good agreement with the exact solution by Nonaka{4] for ideal I-
section with elastic-perfectly plastic material, and with the detailed one-dimensional finite clement
analysis.

Those observations can be easily proved mathematically. According to Nonaka, the non-
dimensional axial displacement is made up of the following components: the axial deformation at
the plastic hinge, 57, the elastic-plastic elongation of the other portions, (5 + 5, and the axial com-
ponents of the change in geometry, 5*{4]. The definition of 5* agrees with that of & (see Appendix),
and 8* corresponds to 8. Let us introduce a new deformation parameter: 5, m8z + 85 —(n + 5),
which corresponds to 8’ in the exact solution.
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In the mechanism state in either the compression or tension range, 5 and 55 are evaluated as

o122

4’!3

2ng (1-|n]V?
bg = —— (~¥—n§ﬂ) 12)
For a slender bar, 8; dominates the other components, and for a stubby bar, n/n. takes a small

value; n ~§ at the mechanism does not depend so much on the value of &
The exact solution yields the following expression for the mechanism state.

=~ Lol ncon(3V(2)) /(5 V(Z)) a
= - L feour (2 (2)) +eom (FV(2)/GV(E)-1} ue

Using the Taylor expansion for hyperbolic functions in eqns (13) and (14), we get

=t il fy o L(mny,. ‘

o= —T}T }ﬂl l+12n£ 5(12!!5) + (15
__2ng(1-]nV [, 1 _f_rirz,)z__...}

= ?'( In| ) {”5(12,.,5 (16
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(3]

Fig. 10 Assumed stress-strain relationship

If we set £ = 1/3, eqn (11) agrees with the first two terms of eqn (15), and eqn (12) agrees with the
first term of eqn (16). In these equations the error introduced by neglecting the terms higher than the
second order is less than 2%, lf ning <0.4.

The relationship between »® and n® (Fig. 5) is obtained by setting e — k = ef + 1 in Case I in
the Table:

(“"@)(”%;?): (1-—@)(”%'-:—) an

The exact solution gives the relationship
(1+70)3 V() eom 5V ()
- (1-50) 3V (5 con (5 V (22) a8
Expanding both members in Taylor series, we get
(7)1 5 () +55 (o)) =]
= (-7 + Tong 3 (Fang) 5 (i)~} a9

If we set ¢ = 1/3, both members of eqn (17) agree with the first two terms of both sides in eqn
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(19). Because the third terms of both members in eqn (19) almost cancel each other, the error
produced by omitting the terms higher than the third order is less than 2%, if n/ng<0.7.

Although there remains concern that the elastic buckling load of the model is about 20% high-
er than the Euler load if ¢ = 1/3, it may become trivial when the unavoidable imperfections are
taken into account; the lack of straightness and the load eccentricity, for example. The initial cur-
vature k* =0.1V(ng) corresponds to the central deflection v = (2L)/1200 and k* = 0.2V(np) to
v ={(2L)/600 The consideration of appropriate initial imperfections leads to a reasonable elastic
buckling load in this analysis (Fig. 12).

The elastic—plastic spring idealization mtroduced in this paper can be applied to the response
analysis{18], or to the problem with more complex boundary conditions[19, 20. In the former,
it dramatically reduces the computing time for determining the incremental load-displacement re-
lationship, and in the latter case, 1t requires the appropriate estimation of the length of the ben-
ding portion An assemblage of several spring-bar units enable us to develop the one-dimensional
finte-element solution{12], which proved the validity of the present analysis.

6 CONCLUSION

The hysteritic axial force-displacement relationship of a simply supported bar underrepeated
axial loading is analysed using the modified Shanley’s model. The closed-form solution is obtained
for the bar of ideal I-section with bi-linear stress~strain relationship. For a bar of arbitrary compact
section with a general piecewise linear stress—strain relationship, an analytical expression is also
derived for the incremental load-displacement relationship.

By solving for a bar of ideal I-section, the axial displacement is expressed as simple functions of
the axial force. The functions do not include exponential or trigonometric functions as does the
exact solution by Nonaka, and the axial force is obtained as the solution of a cubic equation for
given axial displacement. The results for the bar with elastic-perfectly plastic material are in good
agreement with those of the exact solution by Nonaka. The effect of the strain hardening can be
easily taken into account.

The incremental method gives optimum increments of deformation parameters analytically
without the trial-and-error process and consequently takes much less computing time. The
computed results are in good agreement with the detailed finite element analysis and/or the
experimental results.
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APPENDIX

Typical behavior of ideal I-section

Let us consider an example, in which the bar s at first subjected to éﬁxﬂ@ﬁ from the straight virgin state over the
mitial yield hmit The behavior n this process 1s represented by the trace % in the n — & relationship (Fig 5 in text)
When the loading direction 1s reversed at state {2/ and the bar 15 subjected to compresston, the bar contracts without lateral
deflection until the buckling load 1s attained The slender bar buckles elastically at n = —n,, and enters into the mechanism
state under the combined stress of bending and compression after flange l of the mldsectgn ylelds in compression However,
the stubby bar enters into the mechanism state unmedutely atn=~1+u%, where 5 = 1 is the nondimensional residual
displacement in the same sense as ¢” defined in Fig. 3(b) in the text. In the case of n, =0 5, this process is denoted by the
trace D-Q-@-O (Fig 5 In the mechanism state (D-), the stress state of the midsection corresponds to Case 111
(Table 1) The plastic strains of flange 2 of the midsection and the straight segments are ef=e§= 5, and the normalized
stramn eg of the straight segments 15 expressed according to the value of ny

n+(t-p%8. ms1

(n+Djp’-1 > 1 (A1)

Because we assumed that a too stubby bar 1s to be excluded from the analysis, let us restrict the discussion to the case
of =1

When the loading direction 1s reversed again, at stage @ (Fig. 5), the bar behaves elastically, and e and k are expressed
as Case I (Table 1) Because flange 2 of the midsection and the straight segments remain elastic before and after the load
reversal, ¢f = e& = 5. Normalized plastic étmn of flange 1 of the mudsection ef which should satisfy the condition e
=¢~k=e8-1 at load reversal pont (3)— 1s obtamed:

®

=—ﬁf‘—m—[ @{1— e€}+1] (A2)
(1+p.°)(n@+n,) n@+n

Increasing the tension force. n — § attains the pont @ then flange | begins to yield in tension Solving for n m

< 2Anc+n) 1 N ]
ef= 1+u® (n+n,){"{] n+uceg} ! (A3)

nondimensional axial force n® at state ® s obtamed, where ¢ =ef+1 15 taken into account.

Beyond this state, the system moveg into the mechamsm state under combined stress of bending and tension, and 7 ~ §
1s expressed by a curve toward pownt (2), which 15 the previous load-reversal point 1n the tension range. The s state
of the midsection 1s denoted as Case 1l in the Tabie. (If the contraction is increased more and more beyond statel), flange
2 may yield in tension, and the stress state of the midsection may be expressed as Case V (Table ). However, in this state
the magmitude of the nondimensional axial displacement |5| 1s more than twenty and 1s not realistic. Another assumption—
flange 2 always remains elastic except for Case J[V— is adopted 1n addition tg thgse already stated n Section 2)

When the loading direction 1s reve, Sed at state (D), the bar behaves elastically ((D-\8)), and the plastic stramn of flange
1 1s obtained by substituting n = n™ mto eqn (A3)

If the tension force 1s mcreased beyond state (), flange 2 and the straight segments yield Mt state @
the bar becomes straight. A further increase causes the n — 5 relationship to trace the trajectry ecand k arc ex-
pressed as Case IV (Table 1), and er 1s obtained by eqn (10c)

Under alternatgly repeated axial loading with constant displacement amplitude between 59 and 8®, the lateral deflection
vamshes at state at each cycle. and the hysteresis loop stabilizes at the second cycle If loading direction is reversed
from the stress state of Case V, after extremely increasing the contraction, the residnal lateral deflection does not vamsh
at state (2, and the hysteresis loop under constant displacement amphtude detenorates with the increase of the loading

cycle



